Variable selection in classification for multivariate functional data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable selection for multivariate failure time data.

In this paper, we proposed a penalised pseudo-partial likelihood method for variable selection with multivariate failure time data with a growing number of regression coefficients. Under certain regularity conditions, we show the consistency and asymptotic normality of the penalised likelihood estimators. We further demonstrate that, for certain penalty functions with proper choices of regulari...

متن کامل

Variable Selection for Multivariate Survival data

It is assumed for the Cox’s proportional hazards model that the survival times of subjects are independent. This assumption might be violated in some situations, in which the collected data are correlated. The well-known Cox model is not valid in this situation because independence assumption among individuals is violated. For this purpose Cox’s proportional hazard model is extent to the analys...

متن کامل

Variable selection in functional data classification: a maxima hunting proposal

Variable selection is considered in the setting of supervised binary classification with functional data {X(t), t ∈ [0, 1]}. By “variable selection” we mean any dimensionreduction method which leads to replace the whole trajectory {X(t), t ∈ [0, 1]}, with a low-dimensional vector (X(t1), . . . , X(td)) still keeping a similar classification error. Our proposal for variable selection is based on...

متن کامل

Variable Selection for High Dimensional Multivariate Outcomes.

We consider variable selection for high-dimensional multivariate regression using penalized likelihoods when the number of outcomes and the number of covariates might be large. To account for within-subject correlation, we consider variable selection when a working precision matrix is used and when the precision matrix is jointly estimated using a two-stage procedure. We show that under suitabl...

متن کامل

Variable Selection for Multivariate Logistic Regression Models

In this paper, we use multivariate logistic regression models to incorporate correlation among binary response data. Our objective is to develop a variable subset selection procedure to identify important covariates in predicting correlated binary responses using a Bayesian approach. In order to incorporate available prior information, we propose a class of informative prior distributions on th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2019

ISSN: 0020-0255

DOI: 10.1016/j.ins.2018.12.060